An Algorithm for Personalized Product Recommendation based on Preference and Intention Learning
نویسندگان
چکیده
We propose a hybrid learning approach to provide automated assistance for personalized product recommendation. The novel feature of this work is that the system learns and uses models of both user preferences and the user’s intentional context. Both learning types are based on the same user input, but elicit different aspects of the user model. User preference is learned via Support Vector Machine (SVM) with user ratings on the products, whereas the user’s intentional context is inferred using a Hidden Markov Model (HMM) from given product access sequences. We propose a product recommendation scheme based on an analysis on both the preference and intentional context model. An empirical analysis shows that the hybrid approach is able to support users with different preference structures and intentional contexts.
منابع مشابه
Adaptive Bayesian personalized ranking for heterogeneous implicit feedbacks
Implicit feedbacks have recently received much attention in recommendation communities due to their close relationship with real industry problem settings. However, most works only exploit users’ homogeneous implicit feedbacks such as users’ transaction records from ‘‘bought’’ activities, and ignore the other type of implicit feedbacks like examination records from ‘‘browsed’’ activities. The l...
متن کاملExplainable Recommendation: Theory and Applications
Although personalized recommendation has been investigated for decades, the wide adoption of Latent Factor Models (LFM) has made the explainability of recommendations a critical issue to both the research community and practical application of recommender systems. For example, in many practical systems the algorithm just provides a personalized item recommendation list to the users, without per...
متن کاملPreference Modeling and Mining for Personalization
As near-infinite amount of data are becoming accessible on the Web, it becomes more important to support intelligent personalized retrieval mechanisms, to help users identify the results of a manageable size satisfying user-specific needs. Example case studies include major search engines, such as Google and Yahoo, recently released personalized search, which adapts the ranking to the user-spec...
متن کاملIntelligent Approach for Attracting Churning Customers in Banking Industry Based on Collaborative Filtering
During the last years, increased competition among banks has caused many developments in banking experiences and technology, while leading to even more churning customers due to their desire of having the best services. Therefore, it is an extremely significant issue for the banks to identify churning customers and attract them to the banking system again. In order to tackle this issue, this pa...
متن کاملRBPR: Role-based Bayesian Personalized Ranking for Heterogeneous One-Class Collaborative Filtering
Heterogeneous one-class collaborative filtering (HOCCF) is a recently studied important recommendation problem, which consists of different types of users’ one-class feedback such as browses and purchases. In HOCCF, we aim to fully exploit the heterogenous feedback and learn users’ preferences so as to make a personalized and ranking-oriented recommendation for each user. For HOCCF, we can appl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005